skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Abstract We present a unique observation of the X6.4-class flare SOL2024-02-22T22:34 using the Mid-InfraRed Imager (MIRI) at the Goode Solar Telescope. Three ribbon-like flare sources and one unidentified source were detected in MIRI’s two mid-infrared (mid-IR) bands at 5.2 and 8.2μm. The two stronger ribbons displayed maximum mid-IR enhancements of 21% and 18% above quiet-Sun levels and 10% in Helioseismic and Magnetic Imager (HMI) continuum intensity (Ic). The weak ribbon and the unidentified source had maximum mid-IR enhancements of 7% but showed HMI/Icdimmings, instead of excess emissions. Our result suggests that mid-IR emission forms in a higher layer during the flare and is more sensitive to flare heating than HMI/Icemission. The MIRI observations have high temporal resolution (2.6 s cadence in these observations) and show apparent source motions. One flare ribbon extends along weak vertical magnetic-field channels in the sunspot umbra, light bridge, and penumbra, with an approximately 30 s delay between HMI/Icand 8.2μm emissions. Meanwhile, the unidentified source moved at an apparent speed of 130 km s−1from a mixed-polarity area to one flare ribbon with a strong HMI/Icenhancement. We studied available hard X-ray/microwave imaging spectroscopy and used nonlinear force-free field extrapolation modeling to identify flare structures. The observational evidence strongly favors the chromospheric origin of the unidentified mid-IR source. Comparison with the X1.0 flare SOL2022-10-02T20:25 indicates that the total amount of high-energy electron (>60 keV) flux density is a key factor in determining the total brightening area and the maximum intensity enhancement in HMI/Icemissions. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  3. Free, publicly-accessible full text available March 7, 2026
  4. Abstract Magnetic field plays an important role in various solar eruption phenomena. The formation and evolution of the characteristic magnetic field topology in solar eruptions are critical problems that will ultimately help us understand the origin of these eruptions in the solar source regions. With the development of advanced techniques and instruments, observations with higher resolutions in different wavelengths and fields of view have provided more quantitative information for finer structures. It is therefore essential to improve the method with which we study the magnetic field topology in the solar source regions by taking advantage of high-resolution observations. In this study, we employ a nonlinear force-free field extrapolation method based on a nonuniform grid setting for an M-class flare eruption event (SOL2015-06-22T17:39) with embedded vector magnetograms from the Solar Dynamics Observatory (SDO) and the Goode Solar Telescope (GST). The extrapolation results for which the nonuniform embedded magnetogram for the bottom boundary was employed are obtained by maintaining the native resolutions of the corresponding GST and SDO magnetograms. We compare the field line connectivity with the simultaneous GST/Hαand SDO/Atmospheric Imaging Assembly observations for these fine-scale structures, which are associated with precursor brightenings. Then we perform a topological analysis of the field line connectivity corresponding to fine-scale magnetic field structures based on the extrapolation results. The analysis results indicate that when we combine the high-resolution GST magnetogram with a larger magnetogram from the SDO, the derived magnetic field topology is consistent with a scenario of magnetic reconnection among sheared field lines across the main polarity inversion line during solar flare precursors. 
    more » « less
  5. Increasingly one interplanetary coronal mass ejection (ICME) structure can propagate across more than one spacecraft in the solar wind. This usually happens when two or more spacecraft are nearly radially aligned with a relatively small longitudinal separation angle from one another. This provides multi-point measurements of the same structure and enables better characterization and validation of modeling results of the structures embedded in these ICMEs. We report such an event during October 13-14, 2019 when the Solar TErrestrial RElations Observatory Ahead (STA) spacecraft and the Parker Solar Probe (PSP) crossed one ICME structure at two different locations with nominal separations in both heliocentric distances and the longitudinal angles. We first perform an optimal fitting to the STA in-situ measurements, based on an analytic quasi-three dimensional (3D) model, yielding a minimum reduced χ 2 = 0.468. Then we further apply the optimization approach by combining the magnetic field measurements from both spacecraft along their separate paths across the ICME structure. We find that the output based on the optimization (with the minimum reduced χ 2 = 3.15) of the combined two-spacecraft dataset yields a more consistent result, given the much improved agreement of the model output with PSP data. The result demonstrates a magnetic flux rope configuration with clear 3D spatial variations. 
    more » « less
  6. We report a regioselective, nickel-catalyzed syn-1,2-carbosulfenylation of non-conjugated alkenyl carbonyl compounds with alkyl/arylzinc nucleophiles and tailored N–S electrophiles. This method allows the simultaneous installation of a variety of C(sp3) and S(Ar) (or Se(Ar)) groups on to unactivated alkenes, which complements previously developed 1,2-carbosulfenylation methodology in which only C(sp2) nucleophiles are compatible. A bidentate directing auxiliary controls regioselectivity, promotes high syn-stereoselectivity with a variety of E- and Z- internal alkenes, and enables the use of a variety of electrophilic sulfenyl (and seleno) electrophiles. Among compatible electrophiles, those with N-alkyl-benzamide leaving groups were found to be especially effective, as determined through comprehensive structure–reactivity mapping. 
    more » « less
  7. Abstract In order to bridge the gap between heliospheric and solar observations of coronal mass ejections (CMEs), one of the key steps is to improve the understanding of their corresponding magnetic structures like the magnetic flux ropes (MFRs). But it remains a challenge to confirm the existence of a coherent MFR before or upon the CME eruption on the Sun and to quantitatively characterize the CME-MFR due to the lack of direct magnetic field measurements in the corona. In this study, we investigate MFR structures originating from two active regions (ARs), AR 11719 and AR 12158, and estimate their magnetic properties quantitatively. We perform nonlinear force-free field extrapolations with preprocessed photospheric vector magnetograms. In addition, remote-sensing observations are employed to find indirect evidence of MFRs on the Sun and to analyze the time evolution of magnetic reconnection flux associated with the flare ribbons during the eruption. A coherent “preexisting” MFR structure prior to the flare eruption is identified quantitatively for one event from the combined analysis of the extrapolation and observation. Then the characteristics of MFRs for two events on the Sun before and during the eruption forming the CME-MFR, including the axial magnetic flux, field line twist, and reconnection flux, are estimated and compared with the corresponding in situ modeling results. We find that the magnetic reconnection associated with the accompanying flares for both events injects a significant amount of flux into the erupted CME-MFRs. 
    more » « less